Abstract

Laser transformation hardening (LTH) of unalloyed titanium of 1.6 mm-thick sheet, nearer to ASTM Grade 3 of chemical composition was investigated using 2 kW CW Nd:YAG laser. The effects of laser power (750-1 250 W), scanning speed (1 000–3 000 mm/min) and focal point position (from −10 to −30 mm) on the heat input, and hardened-bead geometry (i.e. hardened bead width (HBW), hardened depth (HD) and angle of entry of hardened bead profile with the surface (AEHB)) were investigated using response surface methodology (RSM). The experimental plan is based on Box-Behnken design matrix method. Linear and quadratic polynomial equations for predicting the heat input and the hardened bead geometry were developed. The results indicate that the proposed models predict the responses adequately within the limits of hardening parameters being used. It is suggested that regression equations can be used to find optimum hardening conditions for desired criteria.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.