Abstract

Laser peening without protective coating (LPwC) treatment is one of surface enhancement techniques using impact wave of high pressure plasma induced by laser pulse irradiation. One of the effects of the LPwC treatment is expected to reduce the tensile residual stress and to induce the compressive residual stress in the surface layer of metallic materials. As a laser has no reaction force due to irradiation and also it has easy characteristics for remote control, the LPwC treatment is practically used as a technique for preventing the stress corrosion cracking (SCC) and for improving the fatigue strength of some structural materials. In this study, high cycle fatigue tests with four-points rotating bending loading were carried out on the non-peened and the LPwC treated low-carbon type austenitic stainless steel 316L in order to investigate the effects of the LPwC treatment on the high cycle fatigue strength and the surface fatigue crack propagation behavior. Two types of specimens were prepared; one was a smooth specimen, the other was a specimen with a pre-crack by the fatigue loading from a small artificial hole. As the results of the LPwC treatment, the high compressive residual stress was induced in the surface layer on the specimens, and the region of the compressive residual stress was about 1mm depth from the surface. The fatigue strength of the LPwC treated SUS316L was remarkably improved during the whole regime of the fatigue life up to the 108 cycles compared with the non-peened materials. Through the fracture mechanics investigation of the pre-cracked materials after the LPwC treatment, it became clear that the fatigue crack propagation was restrained by the LPwC treatment on the pre-cracked region, when the stress intensity factor range ΔK on the crack tip was under the value of 7.6 MPa√m.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.