Abstract

Microstructure and shear strength were assessed for a Sn-3.5 wt.%Ag solder joint formed using a laser heat source. A continuous wave Nd:YAG laser was used to make the Sn-3.5 wt.%Ag solder joint. Solder balls of 400μm diameter were used and the laser beam spot diameter at focus was approximately 120μm. The UBM (Under Bump Metallurgy) on a FR4-PCB consisted of Cu/Ni/Au from bottom to top with a thickness of 15μm/5μm/0.05μm, respectively. In order to position solder balls on the UBM, RMA (rosin mildly activated) type flux for a BGA (Ball Grid Array) was used. Selected optimal conditions were as follows: a laser power of 2W and heating time of 0.3 s, 0.5 s, and 0.7 s; a laser power of 3 W and heating time of 0.1 s and 0.3 s; and a laser power of 4 W and a heating time of 0.1 s. Under all conditions, the shear strengths of the solder joint of (CuNi)3Sn4 at the interface between the pad and solder were larger than 554.37 gf (i.e. the shear strength obtained from hot plate reflow). When the laser power was set at 2 W, the microstructure of IMC (intermetallic compound) was recrystallized regularly due to active convection, which was caused by increased heating time. Under a laser power of 4 W and heating time of 0.7 s, the microstructure was recrystallized irregularly due to violent convection caused by excessive energy input (=laser power (W) ×heating time (s)). The IMC layer increased in thickness as a result of increasing the energy input, and was affected by laser power more than by heating time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.