Abstract

Larval crowding is one common ecological stressor for many insect species. In Drosophila, high larval density alters multiple widely-studied phenotypes including life-history traits, morphology and behavior. Nevertheless, we still miss a holistic view of the full range of phenotypic changes and the underlying molecular mechanisms. In this study, we analyzed the adult transcriptomes of high and low larval density fly cohorts, and highlighted the molecular basis of the plastic traits. Increased cellular energy metabolism and locomotion, along with reduced reproductive investment, are key responses to high larval density. Moreover, we compared the expression changes among cohorts with different developmental delays caused by larval crowding. The majority of genes induced by larval crowding showed the strongest expression alterations in cohorts with intermediate delay. Furthermore, linear expression changes were observed in genes related to nutrition and detoxification. Comparing different high-density cohorts could provide insights into the varied responses to distinct larval crowding-induced stresses such as space competition, food degradation and waste accumulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.