Abstract

Ultra high-energy (UHE) cosmic rays (CRs) from distant sources interact with intergalactic radiation fields, leading to their spallation and attenuation. They are also deflected in intergalactic magnetic fields (IGMFs), particularly those associated with Mpc-scale structures. These deflections extend the propagation times of CR particles, forming a magnetic horizon for each CR species. The cumulative cooling and interactions of a CR ensemble also modifies their spectral shape and composition observed on Earth. We construct a transport formulation to calculate the observed UHE CR spectral composition for 4 classes of source population. The effects on CR propagation brought about by IGMFs are modeled as scattering processes during transport, by centers associated with cosmic filaments. Our calculations demonstrate that IGMFs can have a marked effect on observed UHE CRs, and that source population models are degenerate with IGMF properties. Interpretation of observations, including the endorsement or rejection of any particular source classes, thus needs careful consideration of the structural properties and evolution of IGMFs. Future observations providing tighter constraints on IGMF properties will significantly improve confidence in assessing UHE CR sources and their intrinsic CR production properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call