Abstract

In the current research, the question of how to modify the microclimate through landscape planning to create a livable thermal environment within a residential community area has not been clarified. Therefore, this study investigated the effects of landscape on thermal livability in 2980 communities in Shenzhen, and obtained the following findings: (1) the proportion of trees and the average building height were key indicators to determine the average land surface temperature (LST) of a community, while the two-dimensional building characteristics, particularly shape, similarity, and patch dominance, were mainly responsible for regulating the spatial distribution of LST within a community; (2) at the community scale, the cooling intensity of buildings was strongest when their average height was around 40-60 m, and cooling effect of trees was most pronounced when their proportion achieved 20 %; and (3) the LST threshold for thermal livability in Shenzhen was around 35 °C. In summer, a higher proportion of trees and grass, as well as buildings with higher average heights, larger volume ratios, and more complex three-dimensional structures were favorable to maintain a livable community thermal environment, while in winter, a lower proportion of trees was more encouraged. In addition, a smaller average sky view factor can achieve a community thermal environment that warm in winter and cool in summer. These results are expected to facilitate urban planners to develop community renewal from the perspective of thermal livability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call