Abstract

The regulatory functions of soil are getting attention among the scientists and Soil Organic Carbon (SOC) is an important indicator of soil health. The impact of differential use of land on SOC and other edaphic properties were analysed in three important Land use land cover (LULC) system of Tripura, northeast India. Soil cores were divided into four depth profiles (0 - 10, 10 - 30, 30 - 50 and 50 - 100 cm) to observe the changes of edaphic properties into the soil depth gradient. Our results suggest that SOC in the top profile of Managed Plantation (MP) and Jhum Fellow (JF) was 51.68% and 48.55%, less than Natural Forest (NF). From 0 - 10 to 10 - 30 cm soil depth, 43.3%, 8.4% and 39.4% decrease in NF MP and JF found. Total stock of SOC (Mg C·ha﹣1) was found highest in JF (121.87), followed by NF (117.12) and MP (85.34). In top profile, conversion of NF into MP and NF into JF led to 39% and 11% decrease in SOC. The significant variation in SOC stock was found among different LULC under this study (F2,12 = 16.94, P ≤ 0.001). In 0 - 10 cm soil depth, maximum value of bulk density (gm·cm﹣3) was found in MP (1.39) followed by JF (1.27) and NF (1.23). In top profile, significant variation was found among LULC (p < 0.001). Soil pH and moisture content significantly varied (p < 0.05) in 0 - 10, 10 - 30 and 50 - 100 cm soil depth. In contrast to that significant change in soil temperature was found at 30 - 50 cm (p < 0.001) and 50 - 100 cm (p < 0.001). It was observed that JF had highest overall SOC stock than NF and MP. Conversion of NF into MP and JF results significant loss of SOC at 0 - 10 and 10 - 30 cm depth profile. We also found that NF conversion had significant impact on the change in the soil C pool.

Highlights

  • The Land use land cover (LULC) is the common term to describe natural or manmade feature on earth, where land use describes how a piece of a land is managed or used by humans and land cover is the observed physical and biological cover of the land such as vegetation or man-made features [1]

  • In all land uses Soil Organic Carbon (SOC) (%) stock decreases from top to lower layers and maximum change was noticed, when we compared 0 - 10 with 10 - 30 cm soil depth i.e. SOC stock decreased by 60.5%(NF), 68.03%(MP) and 65.07% (JF) (Figure 4)

  • In complete profile along three land uses, the % of SOC was found to low in Managed Plantation (MP) (26.31), (a)

Read more

Summary

Introduction

The Land use land cover (LULC) is the common term to describe natural or manmade feature on earth, where land use describes how a piece of a land is managed or used by humans and land cover is the observed physical and biological cover of the land such as vegetation or man-made features [1]. Over the last decade there has been increasing interest in the impact of differential LULC on tree diversity and other ecosystem properties. This rapidly accelerating change in the LULC is associated with a wide variety of issues, including declining biodiversity [3], global climate change and food security, and land degradation as it applies to soils, vegetation and water. About 14% of the world soil carbon is located in the soils of tropical forests [5] It has been estimated at approximately 3.3 times the size of the atmospheric pool and 4.5 times the size of the biotic pool [6] [7]. Since the 19th century, around 60% of the C in the world’s soils and vegetation has been lost owing to land use change [13]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.