Abstract
Neurons require adhesive scaffolds for their growth and differentiation. Laminins are a major cell adhesive component of basement membranes and have various biological activities in the peripheral and central nervous systems. Here, we evaluated the biological activities of 5 peptides derived from laminin-111 as a scaffold for mouse neuroblastoma Neuro2a cells and rat neural stem/progenitor cells (NPCs). The 5 peptides showed Neuro2a cell attachment activity similar to that of poly-d-lysine. However, when NPCs were cultured on the peptides, 2 syndecan-binding peptides, AG73 (RKRLQVQLSIRT, mouse laminin α1 chain 2719-2730) and C16 (KAFDITYVRLKF, laminin γ1 chain 139–150), demonstrated significantly higher cell attachment and neurite extension activities than other peptides including integrin-binding ones. Long-term cell culture experiments showed that both AG73 and C16 supported the growth of neurons and astrocytes that had differentiated from NPCs. Furthermore, C16 markedly promoted the expression of neuronal markers such as synaptosomal-associated protein-25 and syntaxin 1A. These results indicate that AG73 and C16 are useful for NPC cultures and that C16 can be applied to specialized research on synapses in differentiated neurons. These peptides have the potential for use as valuable biomaterials for NPC research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.