Abstract

Ti44Al6Nb1Cr (at%) alloys with different lamellar spacing were prepared by cold crucible directional solidification. Creep tests were conducted at 750°C under 260 and 300MPa, and the microstructure before and after creep testing were observed and analyzed. The results show that the prepared TiAl alloys have similar macro/microstructure except for lamellar spacing, which are different from the heat-treated TiAl alloys with obviously changed macro/microstructure. The refinement of lamellar spacing can improve creep properties, especially the steady-state of fine lamellar alloy lasted for more than 600h with creep rate at 7.3 × 10−9S−1. The improvement of creep properties by refined lamellar spacing are revealed as following two reasons. (1) Fine lamellar spacing improves the stability of γ lamellae and increases the resistance for dislocation slip in γ lamellae. (2) It disperses stress concentration and delays the formation of globular structure at colony boundary. Moreover, the alternating β and γ laths in α-segregation zone can improve microstructural stability during creep. In β-solidifying γ-TiAl alloy, the local stress concentration on β-segregation at colony boundary promotes colony boundary sliding and the formation of void with globular structure, which further accelerates the creep failure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.