Abstract

In this study, Lactococcus lactis lactis subspecies 1.2472, Streptococcus thermophilus 1.2718, and thermostable Lactobacillus rhamnosus HCUL 1.1901-1912 were used to ferment rice flour for preparing rice bread. The characteristics of fermented rice bread were studied to elucidate the mechanism by which fermentation improves the anti-staling ability of rice bread. The amylose content of rice flour increased after fermentation. The peak viscosity, attenuation value, final viscosity, recovery value, and gelatinization temperature decreased. Amylopectin was partially hydrolyzed, and the amylose content decreased. The crystallinity of starch decreased, and the minimum crystallinity of Lactococcus lactis subsp. lactis fermented rice starch (LRS) was 11.64%. The thermal characteristics of fermented rice starch, including To, Tp, Tc, and ΔH, were lower than RS (rice starch), and the △H of LRS was the lowest. Meanwhile, LRS exhibited the best anti-staling ability, and with a staling degree of 43.22%. The T22 of the LRF rice flour dough was lower, and its moisture fluidity was the weakest, indicating that moisture was more closely combined with other components. The texture characteristics of fermented rice bread were improved; among these, LRF was the best: the hardness change value was 1.421 times, the elasticity decrease was 2.35%, and the chewability change was 47.07%. There, it provides a theoretical basis for improving the shelf life of bread.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.