Abstract

Perinatal events can reprogram the hypothalamo–pituitary–adrenal axis for the entire lifespan leading to abnormal glucocorticoid stress-response (GSR) in adulthood: a phenomenon reported to be mediated by changes in DNA methylation of the glucocorticoid receptor (GR) gene promoter. We examined whether in utero and/or lactational exposure to mixtures of environmental contaminants can also induce abnormal GSR during adulthood. The experiment included nine treatment groups. From gestation day (GD) 0 until postnatal day (PND) 20, dams were fed daily with a cookie laced with corn oil (control) or a chemical mixture (M) [polychlorinated biphenyls (PCBs), organochlorine pesticides, and methylmercury] at 0.5 or 1.0mg/kg/day (0.5M, and M). At birth, some control (C) and M litters were cross-fostered to create four groups with the following in utero/postnatal exposure: C/C, M/C, C/M, M/M. Other dams received 1.8ng/kg/day of a mixture of aryl hydrocarbon receptor (AhR) agonists (non-ortho PCBs, PC-dibenzodioxins and PC-dibenzofurans) without or with 0.5M (0.5MAhR). In adult male offspring the abundance of GR in treated groups was not different from the control, but the AhR and M groups were significantly different from each other with opposite effects in the hippocampus and liver. There was no change in DNA methylation of the GR promoter (exon-17 and -110). Abnormal GSRs were detected in the AhR, 0.5MAhR, CM, and MM groups. The literature associates abnormal GSR with metabolic and mental health impairments, thus these results support further investigation of the influence of developmental exposure to environmental contaminants and predisposition to stress-induced diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call