Abstract
A Cu-2.35Ni-0.69Si alloy with low La content was designed in order to study the role of La addition on microstructure evolution and comprehensive properties. The results indicate that the La element demonstrates a superior ability to combine with Ni and Si elements, via the formation of La-rich primary phases. Owing to existing La-rich primary phases, restricted grain growth was observed, due to the pinning effect during solid solution treatment. It was found that the activation energy of the Ni2Si phase precipitation decreased with the addition of La. Interestingly, the aggregation and distribution of the Ni2Si phase, around the La-rich phase, was observed during the aging process, owing to the attraction of Ni and Si atoms by the La-rich phase during the solid solution. Moreover, the mechanical and conductivity properties of aged alloy sheets suggest that the addition of the La element showed a slight reducing effect on the hardness and electrical conductivity. The decrease in hardness was due to the weakened dispersion and strengthening effect of the Ni2Si phase, while the decrease in electrical conductivity was due to the enhanced scattering of electrons by grain boundaries, caused by grain refinement. More notably, excellent thermal stabilities, including better softening resistance ability and microstructural stability, were detected for the low-La-alloyed Cu-Ni-Si sheet, owing to the delayed recrystallization and restricted grain growth caused by the La-rich phases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.