Abstract

This study aimed to determine the effects of l-arginine (L-Arg) supplementation on steroid hormone receptors in non-pregnant ovine endometrium. All experimental ewes were randomly assigned to either a control group (n = 6), a nutrient-restricted group (n = 6), or an L-Arg supplemented nutrient-restricted group (n = 6). The effects of L-Arg on estrogen receptor α/β (ERα/β) and progesterone receptor (PGR) expression in the ovine endometrium were assessed. Our results showed that levels of ERβ and PGR expression were significantly increased by nutrient restriction, but L-Arg counteracted the effect of nutrient restriction on ERβ and PGR expression (p < 0.05). Also, expression of endometrial ERα was substantially increased (p < 0.05) by L-Arg supplementation. Furthermore, ERα/β and PGR were mainly detected in the endometrial luminal epithelium and glandular epithelium. Therefore, we isolated and identified endometrial epithelial cells (EECs) from sheep. Different concentrations of L-Arg were added to investigate the effects on ERα/β and PGR in EECs. The expression levels of endothelial nitric oxide synthase, ERβ, and PGR were significantly increased in response to low-concentration (200 μmol) L-Arg supplementation, which subsequently decreased with a high concentration (800 μmol) (p < 0.05). Otherwise, ERα expression was remarkably increased at both L-Arg concentrations in EECs (p < 0.05). Overall, the results indicated that L-Arg performed crucial roles in the regulation of ovine steroid hormone receptor expression in the endometrium. The results of this study provide a theoretical basis and technical means for the normal function of endometrium in response to low nutrient levels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.