Abstract

KiSS-1 was originally identified as a metastasis suppressor gene encoding an array of structurally related peptides, namely kisspeptins, which acting through the G protein-coupled receptor GPR54 are able to inhibit tumor progression. Unexpectedly, a reproductive facet of this newly discovered system has recently arisen, and characterization of the role of the KiSS-1/GPR54 system in the neuroendocrine control of gonadotropin secretion has been initiated. However, such studies have been so far mostly restricted to LH, and very little is known about the actual contribution of this system in the regulation of FSH release. To address this issue, the effects of KiSS-1 peptide on FSH secretion were monitored in vivo and in vitro under different experimental conditions. Intracerebroventricular administration of KiSS-1 peptide significantly stimulated FSH secretion in prepubertal and adult rats. Yet, dose-response analyses in vivo demonstrated an ED(50) value for the FSH-releasing effects of KiSS-1 of 400 pmol, i.e. approximately 100-fold higher than that of LH. In addition, systemic (ip and iv) injection of KiSS-1 significantly stimulated FSH secretion in vivo. However, KiSS-1 failed to elicit basal FSH release directly at the pituitary level, although it moderately enhanced GnRH-stimulated FSH secretion in vitro. Finally, mechanistic studies revealed that the ability of KiSS-1 to elicit FSH secretion was abolished by the blockade of endogenous GnRH actions, but it was persistently observed in different models of leptin insufficiency and after blockade of endogenous excitatory amino acid and nitric oxide pathways, i.e. relevant signals in the neuroendocrine control of gonadotropin secretion. In summary, our results extend previous recent observations on the role of KiSS-1 in the control of LH secretion and provide solid evidence for a stimulatory effect of KiSS-1 on FSH release, acting at central level. Overall, it is proposed that the KiSS-1/GPR54 system is a novel, pivotal downstream element in the neuroendocrine network governing gonadotropin secretion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.