Abstract

The changes in the chemical composition of hydration products and pore structure of concrete exposed to high temperature result in the degradation of its mechanical properties and durability characteristics. The effect of high temperature on the properties of concrete depends mainly on various factors related to its quality and the level of temperature exposure. This paper reports the results of a study conducted to study the effect of key concrete factors on its performance on exposure to high temperature. The effect of elevated temperature on the concrete specimens prepared with varying mixture proportions was evaluated by measuring the residual compressive and split-tensile strength. The results indicated an increase in the tensile and compressive strength up to a temperature of 100 °C. However, a significant loss was noted in these values for an exposure temperature of more than 100 °C. The mix design parameters had a significant effect on the performance of concrete exposed to elevated temperature. A concrete mixture with water/cement ratio of 0.30 and fine/total aggregate ratio of 0.375 exhibited maximum resistance to temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.