Abstract

Kappa-opioid receptor stimulation of the heart transiently increases twitch amplitude and decreases Ca2+-dependent actomyosin Mg2+-ATPase activity through an undetermined mechanism. One purpose of the present study was to determine if the increase in twitch amplitude is due to changes in myofilament Ca2+ sensitivity. We also wanted to determine if kappa-opioid receptor activation alters maximum actin-myosin ATPase activity and Ca2+ sensitivity of tension in a way consistent with protein kinase A or protein kinase C (PKC) action. Rat hearts were treated with U50,488H (a kappa-opioid receptor agonist), phenylephrine plus propranolol (alpha-adrenergic receptor stimulation), isoproterenol (a beta-adrenergic receptor agonist), or phorbol 12-myristate 13-acetate (PMA, receptor independent activator of PKC) or were untreated (control), and myofibrils were isolated. U50,488H, phenylephrine plus propranolol, and PMA all decreased maximum Ca2+-dependent actomyosin Mg2+-ATPase activity, whereas isoproterenol treatment increased maximum Ca2+-dependent actomyosin Mg2+- ATPase activity. Untreated myofibrils exposed to exogenous PKC-epsilon, but not PKC-delta, decreased maximum actomyosin Mg2+-ATPase activity. Langendorff-perfused hearts treated with U50,488H, phenylephrine plus propranolol, or isoproterenol had significantly higher ventricular ATP levels compared with control hearts. PKC inhibitors abolished the effects of U50,488H on Ca2+-dependent actomyosin Mg2+-ATPase activity and myocardial ATP levels. U50,488H and PMA treatment of isolated ventricular myocytes increased Ca2+ sensitivity of isometric tension compared with control myocytes at pH 7.0. The U50,488H-dependent increase in Ca2+ sensitivity of tension was retained at pH 6.6. Together, these findings are consistent with the hypotheses that 1) the positive inotropy associated with kappa-opioid receptor activation may be due in part to a PKC-mediated increase in myofilament Ca2+-sensitivity of tension and 2) the kappa-opioid receptor-PKC pathway is a modulator of myocardial energy status through reduction of actomyosin ATP consumption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call