Abstract

The nucleus reticularis tegmenti pontis (NRTP) and adjacent pontine reticular formation were lesioned chemically using the neurotoxic agent kainic acid, and the effects of these lesions on horizontal ocular optokinetic and vestibular nystagmus were examined. Eye position was measured in the alert, NRTP-lesioned animals with the electromagnetic search coil technique. Optokinetic and vestibular stimuli consisted of steps of rotations or sinusoidal oscillations of a fullfield visual pattern surrounding the animal or of the animal in total darkness, respectively. In a first group of animals, small unilateral NRTP lesions were produced by placing a single kainic acid injection in the area of the left NRTP. In one third of the animals, ipsilateral quick phases of optokinetic and vestibular nystagmus were abolished. In the remaining animals, quick phases were deficient to various degrees or not affected at all. There were no changes in the characteristics of optokinetic step responses to ipsilateral pattern rotations which activate predominantly optokinetic pathways on the side of the brainstem lesion. In animals with ipsiversive quick phase deficits, contralateral pattern rotations elicited tonic eye deviations. In a second group of animals, large uni- or bilateral lesions were produced by injecting kainic acid into three separate rostral, middle and caudal levels of the right NRTP. These animals had uni- or bilateral quick phase deficits during optokinetic and vestibular nystagmus. Optokinetic nystagmus in response to velocity steps of pattern rotation towards the lesion side was strongly reduced in gain even in those animals that had no apparent deficits in the fast contraversive reset phases. In four out of six animals, responses to sinusoidal optokinetic pattern oscillations were reduced in gain and showed increased phase lags compared to controls. Vestibulo-ocular responses to velocity steps of head rotations were of normal gain but reduced in duration (measured from onset of stimulation to reversal of nystagmus). Sinusoidal vestibulo-ocular responses evoked by head oscillations exhibited reduced gain values and strongly increased phase leads in the frequency range below 0.5 Hz. The vestibular time constant was found to be around 4.5 s in animals with NRTP lesions compared to about 7.5 s in control animals. The present results show that large kainic acid lesions of the NRTP (and adjacent area) do not abolish optokinetic eye movements in the rat, in contrast to what has been reported after electrolytic lesions.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call