Abstract

The efficiency of cloning of bone marrow multipotent stromal cells (ECF-MSC) from CBA mice and the MSC counts in the femoral bone increased 24 h after a single in vivo (but not in vitro) injection of kagocel (active substance of antiviral drug Kagocel (®) ) 1.4 times (in response to 50-80 μg) and 4.6 times (in response to 250 μg). The maximum increase of ECF-MSC in response to 50 μg per mouse was detected just 1 h after Kagocel injection to intact mice and to mice previously receiving the drug for 3 days (2 and 1.7 times, respectively). The increase of ECF-MSC was 3-fold less intense in response to oral Kagocel in a dose of 250 μg/mouse vs. intraperitoneal Kagocel, ECF-MSC corresponding to its level in response to oral Poly (I:C). In vivo Kagocel led to emergence of proinflammatory cytokine IFN-γ, IL-1β, and IL-8 mRNA in primary cultures of bone marrow stromal cells. Serum concentrations of IL-2, IL-5, IL-10, GM-CSF, IFN-γ, TNF-α, IL-4, and IL-12 increased 1.5 and 2 times just 1 h after Kagocel injection in doses of 30-50 and 250 μg, respectively, to intact mice and to animals previously treated with the drug for 3 days. The cytokine concentrations normalized after 3 h and increased again after 24 h, though did not reach the levels recorded 1 h after the drug injection. These data indicated that the therapeutic and preventive effects of Kagocel, together with its previously demonstrated stimulation of α- and β-interferon production during several days, could be due to the capacity of this drug to increase the bone marrow ECF-MSC, serum cytokine concentrations, and induce the expression of proinflammatory cytokine genes in the bone marrow stromal cells 1 h after its injection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call