Abstract

Simple SummaryFlight and reproduction are two major life history traits for coping with changing environments in migratory insects. The phenomenon of oogenesis-flight syndrome (namely, the trade-off between migration and reproduction) is regulated by juvenile hormone (JH). The oriental armyworm, Mythimna separata (Walker), is an important migratory agricultural pest with strong reproductive capacity. Previous studies have focused on discussions about the effects of JH on M. separata migrants, but little has been known about the potential influences on the residents until now. In this study, the effects of juvenile hormone treatment and age (namely, days after adult emergence) on both migrants and residents of M. separata have been studied. Our results showed that the effects of JH analog (JHA) treatment on reproduction depended on adult age of exposure to JHA and populations. The first two days and only the first day after adult emergence were the sensitive period for the exposure of residents and migrants to JHA on ovarian and reproductive development, respectively.Mythimna separata (Walker) is a main cereal crop pest that causes extensive damage to the world grain production. The effects of juvenile hormone on M. separata populations remain poorly understood. Here, we explored how JH analog (JHA) affected reproductive traits of both migrant and resident populations in this pest. Our results showed that the influence of JHA treatment on reproduction depended on adult age (days after emergence) of exposure to JHA and populations. Exposure of M. separata residents to JHA (methoprene) on day 1 and day 2 after adult emergence significantly shortened the pre-oviposition period, but increased the lifetime fecundity, mating frequency and grade of ovarian development compared to the controls. However, M. separata migrants exposed to JHA only on day 1 facilitated their reproduction, resulting in a reduction in the pre-oviposition period but an increase in lifetime fecundity, mating frequency and grade of ovarian development. In addition, exposure to JHA from day 2 to day 4 did not significantly affect the ovarian and reproductive development in both migrant and resident populations. These results indicated that the first two days after adult emergence were the sensitive period for residents. In contrast, only the first day after adult emergence was the sensitive stage for migrants. Our findings will contribute to a better understanding of JHA function on M. separata populations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call