Abstract

Abstract The objective of this study is to assess the flow behavior of the peristalsis mechanism of a couple stress fluid in incorporating a porous material. In addition, reaction mechanism and Ohmic heating are also taken into consideration with slip boundary conditions. For the purposes of mathematical simulation, we assume a long-wavelength approximation, ignoring the wave number and taking a low Reynolds number into account. The obtained outcome is shown in a graphical manner and then analyzed. The results of this investigation reveal that when the Hartmann number improves, the pattern of velocity noticeably decelerates. The Lorentz forces have a retarding impact on the velocity of the fluid from a physical standpoint. As the couple stress variable rises, so does the velocity of the fluid. As the couple stress component increases, the skin friction coefficient increases in one region of the fluid channel and falls in another region, between x = 0.5 and x = 1. As the thermal slip variable rises, more heat is transferred through the surface to the fluid, resulting in a rise in the temperature profile. When the couple stress variable is raised, the Nusselt number rises, while the thermal radiation factor causes the Nusselt number to decline. The results showed a positive relationship between the Sherwood number and the reaction mechanism parameter. This study demonstrates the potential use of this research in the fields of a career in engineering, namely, in enhancing hydraulic systems, as well as in medicine, particularly in optimizing gastrointestinal processes. The process of dissection facilitates the unimpeded circulation of blood and lymph inside the vascular system of the body, enabling the delivery of oxygen to tissues and the elimination of waste materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.