Abstract

Mechanisms promoting the evolution of cooperation in two players and two strategies (22) evolutionary games have been investigated in great detail over the past decades. Understanding the effects of repeated interactions in multiplayer spatial games, however, is a formidable challenge. In this paper, we present a multiplayer evolutionary game model in which agents play iterative games in spatial populations. -player versions of the well-known Prisoner's Dilemma and the Snowdrift games are used as the basis of the investigation. These games were chosen as they have emerged as the most promising mathematical metaphors for studying cooperative phenomena. Here, we have adopted an experimental approach to study the emergent behavior, exploring different parameter configurations via numerical simulations. Key model parameters include the cost-to-benefit ratio, the size of groups, the number of repeated encounters, and the interaction topology. Our simulation results reveal that, while the introduction of iterated interactions does promote higher levels of cooperative behavior across a wide range of parameter settings, the cost-to-benefit ratio and group size are important factors in determining the appropriate length of beneficial repeated interactions. In particular, increasing the number of iterated interactions may have a detrimental effect when the cost-to-benefit ratio and group size are small.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.