Abstract
In this work, effects of isothermal aging on phase transformation, microstructure evolution, hardness and wear resistance of the wrought Co-Cr-Mo alloy with low carbon content were investigated. Initially, temperature range of FCC to HCP phase transformation of the alloy was determined by a dilatometer test. Then, aging at the temperature of 850 °C for different holding times with subsequent water quenching was carried out. Metallography examination, x-ray diffraction analysis, microhardness test and wear test were performed for Co-Cr-Mo alloy specimens after the isothermal aging. It was found that the FCC to HCP phase transformation occurred in the temperature range between 700 and 970 °C. During the aging treatment, phase fraction of the HCP martensite increased with longer aging time. The FCC to HCP phase transformation was completed after 12 h, because very fine lamellae in different orientations thoroughly dispersed within FCC grains were observed. These lamella structures could be well correlated with formation of the HCP martensite. Small amounts of carbides were found at grain boundaries and grain intersections in the samples aged for 6 and 12 h. In addition, by longer aging time, the average grain size of the aged alloy became a little bit larger, while the hardness noticeably increased. For the examined Co-Cr-Mo alloy, higher amount of the emerged HCP martensitic phase led to the increased hardness value, but reduced friction coefficient and wear rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.