Abstract

Effects of isolobal heteroatoms in divanadium-substituted γ-Keggin-type polyoxometalates, (TBA)(4)[γ-XV(2)W(10)O(38)(μ-OH)(2)] 1(X) and (TBA)(4)[γ-XV(2)W(10)O(38)(μ-O)] 2(X) (where X = Ge or Si), on (OV)(2)(μ-OH)(2) and (OV)(2)(μ-O) core structures and transformations from 2(X) to 1(X) have been investigated. X-ray crystallography of 1(X) and 2(X) reveals that larger Ge (covalent radius 1.22 Å; covalent radius of Si 1.11 Å) induces (a) expansion of (OV)(2)(μ-OH)(2) and (OV)(2)(μ-O) cores, (b) expansion of lacunary sites, and (c) deep location of divanadium cores inside their lacunary sites. Density functional theory (DFT) calculations for anionic moieties of 1(X) and 2(X) reveal that energy levels of the highest occupied molecular orbital (HOMO)-1 in 1(Ge) and HOMO in 2(Ge) are lower than those in 1(Si) and 2(Si), respectively, because of smaller contribution of p(z) orbitals of oxygen atoms in 1(Ge) and 2(Ge), which would result from shorter V···O(-Ge) distances. Compound 2(Ge) reacts with water vapor to form (TBA)(4)[γ-GeV(2)W(10)O(38)(μ-OH)(2)] 1'(Ge) via a crystal-to-crystal transformation, and the water dissociation proceeds heterolytically. DFT calculations reveal that the reaction proceeds through (1) coordination of water on a coordinatively unsaturated site of vanadium in the lowest unoccupied molecular orbital (LUMO), followed by (2) proton transfer to the bridging oxo moiety. The order is different from that in 2(Si), which would result from the lower energy level of HOMO of 2(Ge) (i.e., lower nucleophilicity toward a proton of water) than that of 2(Si).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.