Abstract
The nucleation and growth of two-dimensional islands in a surfactant-mediated epitaxy system have been studied by computer simulation. To improve the recent results published in the literature, we use a configuration-dependent energy barrier for the exchange process at the island edge in our model. The simulations produce fractal islands at high temperatures or low deposition fluxes and a transition to regular compact islands occurs at lower temperatures or higher fluxes, in good agreement with the recent experimental results. The barrier for the island-edge exchange has quite a strong effect on the island density as a function of temperature and flux. A small change of the island-edge exchange barrier induces a large variation of the island density in the low-temperature or high-flux region. The flux-dependent island density shows a clear scaling-law behaviour in the intermediate-flux region. The scaling exponent increases evidently as the island-edge exchange barrier increases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.