Abstract

The presence of excessive algae in water is always considered as a negative factor in irrigation. However, the optimal balance between algal removal and retention in irrigation water when the algal biomass is controllable remains unknown. Therefore, this study explores the impact of low-level algal presence (Scytonema javanicum) on soil and microbial activity through controlled soil column experiments. Soil moisture was measured, and 16S rRNA gene amplicons sequencing was applied to characterize the microbial community. Slight community changes indicated no negative impact on the local microbial community of S. javanicum. Enzyme assays and quantitative polymerase chain reaction (qPCR) revealed that algae improved soil moisture retention, and enhanced the nutrient content of the topsoil. The decrease in moisture in the treatment group (from 27.53% to 26.42%) was significantly reduced (p < 0.05) compared to the control (from 27.55% to 25.17%), while the contents of ammonium (NH3-N) and total nitrogen (TN) in the treatment (0.70 mg/kg and 0.54 g/kg) were also higher (p < 0.05) than that of the control (0.43 mg/kg and 0.49 g/kg). The results of the abundance of functional gene suggested algae facilitated nitrogen fixation and nitrification. This research offers innovative insights for diversifying the sources of irrigation water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.