Abstract
Three harmful algal bloom (HAB) species, Phaeocystis globosa, Thalassiosira rotula, and Prorocentrum donghaiense were isolated from the coast of China and cultured in batches at three light intensities (40, 70 and 150 µmol photons·m−2·s−1). The variation patterns of cell numbers and growth rates with light intensity during growth process were different among species. In P. globosa and T. rotula, maximum growth rates were found at 150 µmol photons·m−2·s−1 and ranged from 0.60 divisions per day in T. rotula, to 1.17 divisions per day in P. globosa. The highest growth rate of P. donghaiense, however, was found at 70 µmol photons·m−2·s−1 (0.36 divisions per day). In general, all the three HAB species showed adaptation to increasing light intensity by decreasing cellular concentrations of chlorophyll a (Chl a), but the variation patterns during the growth process were species-specific. The cellular concentrations of Chl a in P. donghaiense and T. rotula increased gradually with incubation time, but the opposite trend was found in P. globosa. Most of the pigment ratios and pigment indices of these three species were nearly constant during the growth process and showed small changes at different light intensities illustrating the applicability of chemotaxonomy during the initial and developing stages of HAB events, which is very important to study the ecological issues related to HAB species. Ratios of photoprotective carotenoids, such as diadinoxanthin, diatoxanthin and β, β-carotene to total chlorophylls a (Tchl a) showed the trend of increasing with the increase of light intensity during growth process. The species-specific and pigment-specific variations in pigment ratios/indices at different light intensities during growth process probably reflected the differences in the pigment composition as well as the adaption capabilities of different species to the changes of physical conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.