Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs, diameters >50 nm) have received great attention due to their promising use as magnetic resonance imaging (MRI) contrast agents. In this study, we evaluated the cellular uptake and biological responses in vitro of ultrasmall SPIONs (USPIONs, diameters < 50 nm). We compared the cellular responses between breast epithelia isolated from healthy and breast cancer donors after exposure to carboxy-terminated USPIONs (10 and 30 nm PEG-coated, 10 and 30 nm non-PEG-coated). The particles were characterized using transmission electron microscopy (TEM), dynamic light scattering (DLS) and gel electrophoresis. Cellular interactions with USPIONs were assessed by confocal microscopy and TEM. Cellular uptake of USPIONs was quantified using ICP-MS. Cell viability was measured by MTT and neutral red uptake assays. T2* weighted MRI scans were performed using a 7T scanner. Results demonstrated that cell association/internalization of USPIONs was size- and surface coating-dependent (PEG vs. non-PEG), and higher cellular uptake of 10 and 30 nm non-coated particles was observed in both cell types compared with PEG-coated particles. Cell uptake for 10 and 30 nm non-coated particles was higher in cancer cells from two of three tested donors compared to healthy cells from three donors. There was no significant cytotoxicity observed for all tested particles. Significantly enhanced MRI contrast was observed following exposure to 10 and 30 nm non-coated particles compared to PEG-coated particles in both cell types. In comparison, cancer cells showed more enhanced MRI signals when compared to normal cells. The data indicate that cell responses following exposure to USPIONs are dependent on particle properties. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1032-1042, 2016.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Biomedical Materials Research Part B: Applied Biomaterials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.