Abstract

The viscous flow behavior of a 9.6-kg lunar rock containing 22.5 wt.% FeO was studied in the temperature ranges from 620 to 700 C and from 1215 to 1400 C. The material was synthesized under mildy reducing conditions to simulate the Fe(2+)/total Fe ratio of the lunar environment. The effect of iron oxidation state on flow behavior in the high viscosity region is studied for specimens of the 15555 composition with Fe(2+) concentration ratios of 0.94, 0.76, and 0.20. A change in ratio from 0.94 to 0.76 had no observable effect on viscosity, whereas a change from 0.76 to 0.20 was accompanied by a drastic increase in viscosity (some three orders of magnitude) at a given temperature, but without changing the form of the variation of viscosity with temperature. The flow behavior is analyzed as a function of the structural features of the glasses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.