Abstract

The inhibition of volatile fatty acid (VFA) production is an important factor affecting biogas (methane) production in the anaerobic co-digestion systems comprising food waste and sewage sludge. In this study, batch experiments were conducted at medium temperature (36 ± 0.5 °C), during which the biogas production index and material–liquid characteristic parameters of the anaerobic digestion systems containing different concentrations of iron-loaded biochar (Fe-BC) were monitored. The cumulative biogas production data were analyzed using a modified Gompertz kinetic model to determine the effect of the Fe-BC on biogas production in the anaerobic co-digestion system. Studies have shown that addition of Fe-BC does not significantly influence the hydrolysis and acidification stages of anaerobic co-digestion, but does have a significant effect on promoting methanogenesis by alleviating the accumulation of VFAs and improving both the buffer capacity of the system and the efficiency of substrate-to-biogas conversion. When the Fe-BC concentration was 16 g·L−1, the cumulative biogas production reached 329.42 mL·g-VS−1, which was 49.7% higher than the blank group, and the lag period was 3.55 d, which was 42% shorter than the blank group. Mechanistic studies have shown that Fe-BC increased the concentration of coenzyme F420 and the conductivity of the digestate in the co-digestion system, which increased the activity of methanogens in the anaerobic digestion system, thereby promoting methanogenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.