Abstract

Allogeneic bone grafts are frequently sterilized by means of ionizing radiation. We investigated the effects of ionizing radiation on both quasistatic and impact mechanical properties of human bone. Specimens from four paired femora of four donors received doses of 29.5 kGy ("standard," frequently used by tissue banks), 94.7 kGy ("high"), or 17 kGy ("low") of ionizing radiation. Young's modulus was unchanged by any level of radiation. Radiation significantly reduced bending strength, work to fracture, and impact energy absorption; in each case, the severity of the effect increased from low to standard to high doses of radiation. Work to fracture was particularly severely degraded; specimens irradiated with the high dose absorbed only 5% of the energy of the controls. Radiation, even at relatively low doses, makes the bone more brittle and thereby reduces its energy-absorbing capacity. We suggest that because the level of radiation required to produce an acceptable level of viral inactivation (90 kGy) produces an unacceptable reduction in the mechanical integrity of the bone, low levels of radiation, sufficient to produce bacterial safety, should be used in conjunction with biological tests to ensure viral safety.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.