Abstract
SummaryThe effects of cations on desorption of phosphate previously added to soil were studied by mixing phosphated soil with solutions of chloride salts at a range of solutionitoil ratios and for periods which ranged from 1 to 96 h. Phosphate desorbed was then related to the experimental variables by a pair of simultaneous equations. In calcium chloride, the rate of desorption of phosphate was inversely proportional to the calcium concentration. Desorption was faster in 0.01 M magnesium chloride than in 0:01 M calcium chloride, and faster in 0.03 M sodium chloride than in either magnesium or calcium chloride. Addition of a further supply of the cation on an exchange resin increased the rate for both sodium and magnesium but decreased it for calcium. A range of monovalent cations formed a sequence from fastest to slowest of: Li+ > Na+ > NH4−> K +, Rb + > Cs +. The identity and concentration of the cations had a large effect on the concentration of phosphate when the solution: soil ratio was small. There were also large effects in the amount of phosphate desorbed when the solution: soil ratio was large and the concentration of phosphate approached zero. This suggested that the escaping tendency of the phosphate was decreased when the cations which balanced the negative charge on the adsorbed phosphate were close to the surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.