Abstract
Five quaternary ammonium cations, including tetramethylammonium, tetraethylammonium, hexadecyltrimethylammonium, benzyltrimethylammonium, and 1-butyl-3-methylimidazolium, have been separated by capillary electrophoresis. A direct ultraviolet method has been achieved when tetrabutylammonium fluoride was the background electrolyte and meso-octamethylcalix[4]pyrrole was the background electrolyte additive. The ultraviolet spectra of meso-octamethylcalix[4]pyrrole and cation mixtures showed that redshifts can be attributed to the size of cations, and the maximum absorption wavelength shifted from 218 to 230 nm when tetrabutylammonium cation was substituted with tetramethylammonium cation or tetraethylammonium cation. Conductivity measurements were performed to evaluate the ion-pairing effect of tetrabutylammonium fluoride in a mixture of acetonitrile/ethanol (80:20, v/v), and the ion-pairing formation constant, Kip, was calculated (Kip = 14.8 ± 0.3 L/mol) using the Fuoss extended model. Ion pairing also occurs between cations of the analytes and counterion, a fluoride complex of meso-octamethylcalix[4]pyrrole. The tetramethylammonium cations associate more strongly with this counterion than the tetraethylammonium cation that contributes to the change of selectivity in capillary electrophoresis separation. The effective mobilities of the cations with trimethyl groups, such as tetramethylammonium cation, benzyltrimethylammonium cation, and hexadecyltrimethylammonium cation, decreased faster than others with the increase of meso-octamethylcalix[4]pyrrole concentration, highlighting the fact that the ion-pairing effect played an important role in this method.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.