Abstract
A series of waterborne poly(urethane-urea)s, WPUUs, based on using nonpolar hydroxyl-terminated polybutadiene (HTPB) as the soft segment, were successfully synthesized in this article. The effects of the COOH group content and soft-segment molecular weight (Mns) on the dispersion, morphology, and physical properties were investigated. Variations of the particle size, viscosity, and zeta potential were first governed by the hydrophilicity of the polymer chain, and then by the swelling derived from water. Fourier transfer infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) indicated that the degree of phase separation decreased as the COOH group content increased or as Mns decreased. However, the hydrogen bonding between the soft and hard segments and the two-phase mixing could not occur in this nonpolar HTPB-based WPUU system, indicating that the hard segments tended to form smaller domains and to pack more loosely. It was attributed to the fact that the presence of bulky ionic salt groups destroyed the ordered arrangement of the hard segments. In this case, the increases of the interface area between the soft and hard phases resulted in that the present behaviors were similar to the phase mixing. In tensile properties, HTPB-based WPUUs exhibited higher tensile stress, elongation at break, and modulus as the COOH group content decreased or as Mns decreased. In thermal degradation, the introduction of HTPB polyol improved the thermal stability of WPUU. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.