Abstract

AbstractAn investigation into the SiC surface and its interaction with aluminum, in particular, focusing on the effect of ion bombardment and adsorption of oxygen, is described. Stoichiometric and carbon rich and SiC surfaces were produced and analyzed “in situ” by Auger electron spectroscopy and x-ray photoelectron spectroscopy. Cubic SiC shows preferential sputtering under Ar ion bombardment, leading to carbon rich surface, whereas high temperature annealing also causes carbon rich surface. Activity of these surfaces was compared with oxygen and aluminum adsorption. Stoichiometrically sputtered surface showed vastly increased oxygen affinity, whereas carbon-rich sputtered surfaces did not. Aluminum deposition caused significant Al-C interaction for the stoichometric ion-bombarded surface. Aluminum carbide was induced catalytically upon heating in the presence of oxygen. Carbon-rich surfaces had, however, no significant interactions with as-deposited Al due to strong surface C-C bonds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call