Abstract

Alterations in the myelin proteolipid protein gene (PLP1) may result in rare X-linked disorders in humans such as Pelizaeus–Merzbacher disease and spastic paraplegia type 2. PLP1 expression must be tightly regulated since null mutations, as well as elevated PLP1 copy number, both lead to disease. Previous studies with Plp1-lacZ transgenic mice have demonstrated that mouse Plp1 (mPlp1) intron 1 DNA (which accounts for slightly more than half of the gene) is required for the mPlp1 promoter to drive significant levels of reporter gene expression in brain. However not much is known about the mechanisms that control expression of the human PLP1 gene (hPLP1). Therefore this review will focus on sequences in hPLP1 intron 1 DNA deemed important for hPLP1 gene activity as well as a couple of “human-specific” supplementary exons within the first intron which are utilized to generate novel splice variants, and the potential role that these sequences may play in PLP1-linked disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.