Abstract

Quantum decoherence happens when the system interacts with the environment. Quantum correlation behaviours in the two-qubit spin squeezing model are studied under the influence of intrinsic decoherence. Quantitative results were determined, which depend on parameters of the physical system by checking different quantifiers of quantum correlation such as entanglement, local quantum uncertainty, trace distance discord and uncertainty-induced quantum nonlocality. We show that the entanglement suffers from intrinsic decoherence and exhibits sudden death, whereas the other measures are more robust against intrinsic decoherence. Further, we highlight the role of spin squeezing coupling constant and magnetic field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.