Abstract

This study analysed, in vivo and in vitro, the effects of four different intravenous iron preparations (iron gluconate, iron sucrose, iron dextran and ferric carboxymaltose) on activation and damage of mononuclear cells. A randomized prospective study was conducted in 10 haemodialysis (HD) patients. Blood samples were collected at baseline (T0); 1 h after starting HD, just before the iron or saline administration (T1); 30 min after the iron or saline infusion (T2) and at the end of HD (T3). In addition, peripheral blood mononuclear cells from 10 healthy individuals and 9 chronic kidney disease Stage-5 (CKD-5) without HD treatment were cultured with the 4 iron preparations. Iron infusion during the HD session increased the percentage of mononuclear cells with reactive oxygen species (ROS) production, Inter-Cellular Adhesion Molecule-1 (ICAM-1) and apoptosis. There were no significant differences between the four iron preparations. Culture of mononuclear cells from healthy individuals and CKD-5 patients with the different iron preparations resulted in a significant increase in ROS, ICAM-1 and apoptosis as compared with control. In an additional study, the effect of original iron sucrose formulation on mononuclear cells was compared with that of one generic formulation. The generic formulation produced a greater increase in ROS, ICAM-1 and apoptosis than the original iron sucrose. Our results suggest that intravenous iron has deleterious effects on mononuclear cells. The four iron compounds evaluated produced similar effects on oxidative stress, cell activation and apoptosis. However, the effects of iron compounds with the same formulation were different, thus further investigation may be required to establish the safety of iron preparations that theoretically have the same composition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.