Abstract

Fetal growth restriction (FGR) is associated with compromised growth and metabolic function throughout life. Intrauterine therapy of FGR with intra-amniotic insulin-like growth factor-1 (IGF1) enhances fetal growth and alters perinatal metabolism and growth in a sex-specific manner, but the adult effects are unknown. We investigated the effects of intra-amniotic IGF1 treatment of FGR on adult growth and body composition, adrenergic sensitivity, and glucose-insulin axis regulation. Placental embolization-induced FGR was treated with four weekly doses of 360 µg intra-amniotic IGF1 (FGRI) or saline (FGRS). Offspring were raised to adulthood (18 mo: FGRI, n = 12 females, 12 males; FGRS, n = 13 females, 10 males) alongside offspring from unembolized and untreated sheep (CON; n = 12 females, 21 males). FGRI females had increased relative lean mass compared with CON but not FGRS (P < 0.05; 70.6 ± 8.2% vs. 61.4 ± 8.2% vs. 67.6 ± 8.2%), decreased abdominal adipose compared with CON and FGRS (P < 0.05; 43.7 ± 1.2% vs. 49.3 ± 0.9% vs. 48.5 ± 1.0%), increased glucose utilization compared with FGRS but not CON (P < 0.05; 9.6 ± 1.0 vs. 6.0 ± 0.9 vs. 7.6 ± 0.9 mg·kg-1·min-1), and increased β-hydroxybutyric acid:nonesterified fatty acid ratio in response to adrenaline compared with CON and FGRS (P < 0.05; 3.9 ± 1.4 vs. 1.1 ± 1.4 vs. 1.8 ± 1.4). FGRS males were smaller and lighter compared with CON but not FGRI (P < 0.05; 86.8 ± 6.3 vs. 93.5 ± 6.1 vs. 90.7 ± 6.3 kg), with increased peak glucose concentration (10%) in response to a glucose load but few other differences. These effects of intra-amniotic IGF1 therapy on adult body composition, glucose-insulin axis function, and adrenergic sensitivity could indicate improved metabolic regulation during young adulthood in female FGR sheep.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call