Abstract

Intrauterine devices block luteolysis in cyclic mares, but the underlying mechanism is unknown. To clarify the mechanisms, the protein profile of the endometrial secretome was analyzed using two-dimensional difference gel electrophoresis (2D-DIGE). Twenty-seven mares were classified according to whether they were inseminated (AI) or had an intrauterine device (IUD), a water-filled plastic sphere, inserted into the uterus on Day 3 after ovulation. Uterine lavage fluids were collected on Day 15 from pregnant inseminated mares (AI-P; n = 8), non-pregnant inseminated mares (AI-N; n = 4), and mares with IUD (n = 15). The IUD group was further divided into prolonged (IUD-P; n = 7) and normal luteal phase (IUD-N; n = 8) groups on the basis of ultrasound examinations, serum levels of progesterone and PGFM on Days 14 and 15, and COX-2 results on Day 15. Four mares from each group were selected for the 2D-DIGE analyses. Ten proteins had significantly different abundance among the groups, nine of the proteins were identified. Malate dehydrogenase 1, increased sodium tolerance 1, aldehyde dehydrogenase 1A1, prostaglandin reductase 1, albumin and hemoglobin were highest in pregnant mares; T-complex protein 1 was highest in non-pregnant mares; and annexin A1 and 6-phosphogluconolactonase were highest in IUD mares. The results suggest that the mechanism behind the intrauterine devices is likely related to inflammation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.