Abstract

To determine if nuclear factor-κB (NF-κB) activation may be a key factor in lung inflammation and respiratory dysfunction, we investigated whether NF-κB can be blocked by intratracheal administration of NF-κB decoy oligodeoxynucleotides (ODNs), and whether decoy ODN-mediated NF-κB inhibition can prevent smoke-induced lung inflammation, respiratory dysfunction, and improve pathological alteration in the small airways and lung parenchyma in the long-term smoke-induced mouse model system. We also detected changes in transcriptional factors. In vivo, the transfection efficiency of NF-κB decoy ODNs to alveolar macrophages in BALF was measured by fluorescein isothiocyanate (FITC)-labeled NF-κB decoy ODNs and flow cytometry post intratracheal ODN administration. Pulmonary function was measured by pressure sensors, and pathological changes were assessed using histology and the pathological Mias software. NF-κB and activator protein 1(AP-1) activity was detected by the electrophoretic motility shift assay (EMSA). Mouse cytokine and chemokine pulmonary expression profiles were investigated by enzyme-linked immunosorbent assay (ELISA) in bronchoalveolar lavage fluid (BALF) and lung tissue homogenates, respectively, after repeated exposure to cigarette smoke. After 24 h, the percentage of transfected alveolar macrophages was 30.00 ± 3.30%. Analysis of respiratory function indicated that transfection of NF-κB decoy ODNs significantly impacted peak expiratory flow (PEF), and bronchoalveolar lavage cytology displayed evidence of decreased macrophage infiltration in airways compared to normal saline-treated or scramble NF-κB decoy ODNs smoke exposed mice. NF-κB decoy ODNs inhibited significantly level of macrophage inflammatory protein (MIP) 1α and monocyte chemoattractant protein 1(MCP-1) in lung homogenates compared to normal saline-treated smoke exposed mice. In contrast, these NF-κB decoy ODNs-treated mice showed significant increase in the level of tumor necrosis factor-α(TNF-α) and pro-MMP-9(pro-matrix metalloproteinase-9) in mice BALF. Further measurement revealed administration of NF-κB decoy ODNs did not prevent pathological changes. These findings indicate that NF-κB activation play an important role on the recruitment of macrophages and pulmonary dysfunction in smoke-induced chronic lung inflammation, and with the exception of NF-κB pathway, there might be complex mechanism governing molecular dynamics of pro-inflammatory cytokines expression and structural changes in small airways and pulmonary parenchyma in vivo.

Highlights

  • Extensive exposure to cigarette smoke is a principal risk factor associated with chronic obstructive pulmonary disease (COPD)

  • Statistical significance was accepted at P < 0.05.Peak inspiratory flow (PIF): peak inspiratory flow; PEF: peak expiratory flow. n = 10–15/ group

  • Nuclear extracts prepared from whole lung of normal saline (NS) or scrambled ODNs (Scr) intratracheally instillated mice demonstrated strong nuclear factor-κB (NF-κB) binding activity, as assessed by electrophoretic motility shift assay (EMSA) (Fig. 1A)

Read more

Summary

Introduction

Extensive exposure to cigarette smoke is a principal risk factor associated with chronic obstructive pulmonary disease (COPD). An increase in expression of many of these mediators translates to activation of an inflammatory cascade involving cytokines, chemokines, growth factors, enzymes, receptors, and adhesion molecules [1,2,3,4]; specific to COPD are increased levels of tumor necrosis factor-α (TNFα), interferon-γ(IFNγ), interleukin-8(IL-8), macrophage inflammatory protein 1α(MIP-1α), monocyte chemoattractant protein 1(MCP-1), GROα, and matrix metalloproteinase(MMP)-9 [1,2,3,4]. In the past few years, five mammalian NF-κB family members have been identified and cloned [7,8,9] These include NF-κB1 (p50/p105), NF-κB2 (p52/p100), RelA (p65), RelB, and c-Rel. In resting cells NF-κB is retained in the cytoplasm due to inhibitory protein (I-κB) binding. Chronic exposure to cigarette smoke causes cellular oxidative stress, a key feature in smoking-induced lung inflammation [11,12,13], and oxidative stress ( hydrogen peroxide) can enhance the DNA binding activity of NF-κB [14]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call