Abstract

Injection of capsaicin into the hindpaw has been employed as a model of chemogenic nociception in mice. Intraplantar injection of nociceptin (30–240 pmol) produced a significant and dose-dependent antinociceptive activity in the capsaicin test. The nociceptin N-terminal fragments, (1–11) and (1–13), were also active with a potency higher than nociceptin and comparable to nociceptin, respectively. Intraplantar injection of the nociceptin (1–7) fragment had no effect on capsaicin-induced nociception. Antinociception induced by nociceptin or nociceptin (1–13) was reversed significantly by intraplantar co-injection of [Nphe 1]nociceptin (1–13)NH 2, an orphan opioid receptor-like 1 (ORL1) receptor antagonist, whereas local injection of the antagonist did not interfere with the action of nociceptin (1–11). Nociceptin (1–11) was approximately 2.0-fold more potent than naturally occurring peptide nociceptin, and 10-fold more active than intraplantar morphine. Nociceptive licking/biting response to intraplantar injection of capsaicin was desensitized by repeated injections of capsaicin at the interval of 15 min. Desensitization induced by capsaicin was attenuated significantly by co-injection of nociceptin at much lower doses than antinociceptive ED 50 for nociceptin. Capsaicin desensitization was also decreased by co-injection of nociceptin (1–11) and (1–13) to a similar extent. The present results indicate that not only nociceptin but also the N-terminal fragment (1–13) possesses a local peripheral antinociceptive action, which may be mediated by peripheral ORL1 receptors. In addition, the difference of the effective doses suggests that the antinociceptive action and inhibition of capsaicin-induced desenitization by nociceptin, nociceptin (1–11) and (1–13), may involve distinct mechanisms at the level of the peripheral nerve terminal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call