Abstract

Adult dogs were subjected to laparotomy and intraoperative electron irradiation after division and reanastomosis of aorta or after construction of a blind loop of small intestine having a transverse suture line and an end-to-side anastomosis. Dogs received intraoperative irradiation of both intact and anastomosed aorta or intestine in doses of 0, 2000, 3000, or 4500 rad. Animals were sacrificed at seven days or three months following treatment. At 24 hours prior to sacrifice, dogs received 5 mCi tritiated thymidine intravenously. Irradiated and non-irradiated segments of aorta and small intestine, including intact and anastomotic regions, were analyzed for tritiated thymidine incorporation and were subjected to autoradiography. Incorporation studies showed diminution in tritiated thymidine uptake by irradiated portions of aorta and small intestine, in both intact and anastomotic regions. Autoradiograms revealed that irradiated areas of intact or anastomotic aorta or intestine had diminished labeling of stromal cells, suggesting a lowered cell proliferative capacity of irradiated tissue compared to non-irradiated portions. Inflammatory cells showed similar labeling indices in irradiated and non-irradiated tissues, both intact and surgically-manipulated, suggesting that irradiation does not significantly affect a subsequent local inflammatory response. Radiation-induced decreases in tritiated thymidine incorporation in irradiated aorta and small intestine were generally more marked at seven days than at three months following irradiation, suggesting that radiation-induced depression of cell turnover rates decreases with time. The presence of tritiated thymidine uptake after irradiation demonstrates the ability of intact and surgically-manipulated aorta and intestine to recover from radiation-induced damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.