Abstract
Background Numerous experimental and clinical studies have shown that intrastriatal fetal mesencephalic grafts grow, survive, and reinnervate host brain tissue, resulting in partial recovery of motor deficits. In addition, pharmacological evidence indicates that these grafts increase dopamine secretion in lesioned brain. However, to date, no grafting method has completely restored the nigrostriatal pathway, and there is no consensus on optimal graft numbers or locations. This study compared outcomes with multiple striatal grafts vs a single intranigral graft in a rat model of Parkinson disease. Methods Forty-one female Wistar rats weighing 200 to 250 g were used. First, baseline rotational behavior testing with amphetamine injection was done to identify each animal's dominant nigrostriatal pathway (left vs right hemisphere). Some rats then received a unilateral intranigral injection of 6-hydroxydopamine (4 μL [8 μg]) to produce the Parkinson model lesion, and rotational testing was repeated. One group of the lesioned rats received a single intranigral injection of suspended fetal ventral mesencephalic cells (n = 11), and another received multiple intrastriatal grafts of the same type (n = 11). Results Both grafted groups showed significant improvement on rotational testing with amphetamine and apomorphine at 6 weeks “postgrafting” ( P < .001 for “postlesioning” vs postgrafting results in each of the 2 groups); however, the animals with multiple intrastriatal grafts showed complete recovery from motor asymmetry, whereas the rats with single intranigral grafts showed only partial improvement. Conclusion The findings indicate that multiple intrastriatal grafts result in significantly greater functional improvement than single intranigral grafts in this rat Parkinson model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.