Abstract
Rationale Rhinophototherapy has been shown to be effective in the treatment of allergic rhinitis. Considering that phototherapy with ultraviolet light (UV) induces DNA damage, it is of outstanding importance to evaluate the damage and repair process in human nasal mucosa. Methods We have investigated eight patients undergoing intranasal phototherapy using a modified Comet assay technique and by staining nasal cytology samples for cyclobutane pyrimidine dimers (CPDs), which are UV specific photoproducts. Results Immediately after last treatment Comet assay of nasal cytology samples showed a significant increase in DNA damage compared to baseline. Ten days after the last irradiation a significant decrease in DNA damage was observed compared to data obtained immediately after finishing the treatment protocol. Difference between baseline and 10 days after last treatment was not statistically significant. Two months after ending therapy, DNA damage detected by Comet assay in patients treated with intranasal phototherapy was similar with that of healthy individuals. None of the samples collected before starting intranasal phototherapy stained positive for CPDs. In all samples collected immediately after last treatment strong positive staining for CPDs was detected. The number of positive cells significantly decreased 10 days after last treatment, but residual positive staining was present in all the examined samples. This finding is consistent with data reported in skin samples after UV irradiation. Cytology samples examined two months after ending therapy contained no CPD positive cells. Conclusion Our results suggest that UV damage induced by intranasal phototherapy is efficiently repaired in nasal mucosa.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Photochemistry and Photobiology B: Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.