Abstract

Using an animal model, we have studied the response of the auditory brain stem to cochlear implantation and the effect of intracochlear factors on this response. Neonatally, pharmacologically deafened cats (100 to more than 180 days old) were implanted with a 4-electrode array in both cochleas. Then, the left cochlea of each cat was electrically stimulated for total periods of up to 1000 hours. After a terminal 14C-2-deoxyglucose (2DG) experiment, the fraction of the right inferior colliculus with a significant accumulation of 2DG label was calculated. Using 3-dimensional computer-aided reconstruction, we examined the cochleas of these animals for spiral ganglion cell (SGC) survival and intracochlear factors such as electrode positions, degeneration of the organ of Corti, and the degree of fibrosis of the scala tympani. The distribution of each parameter was calculated along the organ of Corti from the basal end. There was a positive correlation between SGC survival and the level of fibrosis in the scala tympani, and a negative correlation between SGC survival and the degree of organ of Corti degeneration. Finally, there was a negative correlation between the 2DG-labeled inferior colliculus volume fraction and the degree of fibrosis, particularly in the 1-mm region nearest the pair of electrodes, and presumably in the basal turn. (Otolaryngol Head Neck Surg 2000;122:425-33.)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call