Abstract
Brain glycogen is a vital energy source during metabolic imbalance. Metabolic sensory neurons in the ventromedial hypothalamic nucleus (VMN) shape glucose counter-regulation. Insulin-induced hypoglycemic (IIH) male rats were infusedicv with the glycogen breakdown inhibitor CP-316,819 (CP) to investigate whether glycogen-derived fuel controls basal and/or hypoglycemic patterns of VMN gluco-regulatory neuron energy stability and transmitter signaling. CP caused dose-dependent amplification of basal VMN glycogen content and either mobilization (low dose) or augmentation (high dose) of this depot during IIH. Drug treatment also prevented hypoglycemic diminution of tissue glucose in multiple structures. Low CP dose caused IIH-reversible augmentation of AMPK activity and glutamate decarboxylase (GAD) protein levels in laser-microdissected VMN GABA neurons, while the higher dose abolished hypoglycemic adjustments in these profiles. VMN steroidogenic factor-1 (SF-1) neurons exhibited suppressed (low CP dose) or unchanged (high CP dose) basal SF-1 expression and AMPK refractoriness of hypoglycemia at each dose. CP caused dose-proportionate augmentation of neuronal nitric oxide synthase protein and enhancement (low dose) or diminution (high dose) of this profile during IIH; AMPK activity in these cells was decreased in high dose-pretreated IIH rats. CP exerted dose-dependent effects on basal and hypoglycemic patterns of glucagon, but not corticosterone secretion. Results verify that VMN GABA, SF-1, and nitrergic neurons are metabolic sensory in function and infer that these populations may screen unique aspects of neurometabolic instability. Correlation of VMN glycogen augmentation with attenuated hypoglycemic VMN gluco-regulatory neuron AMPK activity implies that expansion of this fuel reservoir preserves cellular energy stability during this metabolic threat.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.