Abstract

The present investigation was designed to assess whether lens membrane permeability is affected by changes in levels of intracellular calcium. Lanthanum, an inhibitor of Ca-ATPase, affected an increase in the concentration of intracellular calcium (Cai) measured in cortical fiber cells. Preculture of lenses in lanthanum (1.0mM) caused an accumulation of 36Cl during subsequent culture at a rate three-fold higher than control lenses. Changes in calcium levels, however, were not responsible for the observed flux changes because a 40mV depolarization was observed to occur prior to a significant increase in calcium levels. The non-specific effects of lanthanum and other potential inhibitors of calcium transport were avoided by preculturing lenses in an ion-HEPES medium containing 20mM calcium chloride. In lenses with a six-fold increase in calcium levels there resulted only a 10% increase in 36Cl uptake over a 3 hr period. 86Rb efflux was also measured and the rate constant was unchanged compared to control lenses. Calcium accumulation did lead to a small (8mV) depolarization which may account for the small increase in chloride accumulation. By light microscopy, morphology of cortical lens fibers and the epithelium appeared unchanged in the calcium-loaded lens. The results provide little evidence that an increase in Cai leads to acute changes in lens membrane permeability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.