Abstract

1. Defined jejunal segments were perfused with solutions of bile salts and of ricinoleic acid during fasting and after feeding in two groups of conscious dogs, one with the segment in continuity, and the other with a Thirty-Vella loop. Myoelectric activity was recorded from chronically implanted electrodes on the jejunal segment and also from the proximal and distal in situ bowel.2. The results in both groups were identical. During fasting, migrating complexes were present in the segment, but were replaced by intermittent spike activity during chenodeoxycholate without and with ricinoleic acid perfusion. After food, when migrating complexes were replaced by intermittent spike activity, none of the solutions produced any consistent effect.3. In fasted animals, low levels of distension (15 mmHg) interrupted the migrating complexes in the segment and induced intermittent spike activity which was similar to that seen with the secretagogues. The migrating complexes in the main bowel continued during distension. In fed animals, spike activity increased in the segment during distension at 25 mmHg and decreased in the main bowel. In both groups, distension of the segment to pressures between 37.5 and 50 mmHg abolished spike activity both in the distended segment and the main bowel in fasted and fed states, and, in fasted dogs, migrating complexes were also abolished.4. These results demonstrate that the inhibitory intestino-intestinal reflex is mediated through extrinsic nerves and does not require an intact myenteric plexus, whereas the altered myoelectric activity induced by secretagogues is a local effect and does not spread to adjacent bowel through either intrinsic or extrinsic neural pathways. It seems likely that the local motor effect of secretagogues is a result of net secretion, producing distension to pressures below the threshold required to activate the intestino-intestinal reflex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.