Abstract

Crossbred beef heifers (n = 18) fed at 1.3× maintenance were exposed to summer daytime temperatures (20 ± 0.2°C) for 8 h (08:00 until 16:00) and to control (22°C), moderate (–6°C) or cold (–15°C) environments for 16 h daily (16:00 until 08:00) for a minimum 21-d adaptation period to investigate the effects of in tensity of intermittent cold exposure on vaginal temperature and resting heat production. Resting heat production was measured at the end of the adaptation period. Vaginal temperature was continuously monitored throughout the experiment using radiotelemetry. Vaginal temperature increased immediately after the onset of cold exposure in both moderate and cold treatments, peaked after 3 h, and returned to pre-exposure levels by the time the 16-h treatment ended. In contrast, vaginal temperatures of control heifers peaked only after feeding at 08:30. Treatment did not affect daily maximum (P= 0.60), mean (P = 0.72) or minimum (P = 0.34) vaginal temperatures, but heifers in both cold-exposed treatments spent more time (P = 0.03) with vaginal temperatures exceeding the daily mean vaginal temperature than control heifers. Compared to control heifers, the variability of vaginal temperature increased 1.8- and 2.2-fold in the moderate and cold treatments, respectively (P = 0.04), and did not change with time (P = 0.98 ). Resting heat production did not increase following 21 d of exposure to moderate and cold conditions. Results of this study indicate that intermittent cold exposure influenced circadian body temperature rhythms without increasing resting heat production. Key words: Beef cattle, thermoregulation, vaginal temperature, heat production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.