Abstract
This study is aimed at investigating the effects of intermediate support stiffness on nonlinear vibration response of transmission system. A coupled bending–torsional–lateral dynamic model with 14 degrees of freedom of transmission system is proposed comprehensively considering rubber dynamic stiffness, time-varying stiffness, static transmission error, and backlash. Meanwhile, a model of intermediate support with rubber nonlinear properties is developed to improve the accuracy of analysis. On the basis of the nonlinear differential equations derived by the lumped-parameter method, the dynamic responses of the key parts in the transmission system are obtained using the Runge–Kutta method and the effects of intermediate support stiffness on the dynamic characteristics are analyzed. Numerical results show that complicated interaction occurs and intermediate support stiffness has a great influence on the vibration of the coupled system. With the increase in the intermediate support stiffness, the vibration displacements in the three directions of the gear are progressively reduced and the nature frequencies are changed. The influence of the radial stiffness is greater than that of the axial stiffness. An experiment is performed subsequently to validate the effect of intermediate support stiffness on system, and the experimental results are consistent with numerical ones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.